The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint.

نویسندگان

  • S Biggins
  • A W Murray
چکیده

The spindle checkpoint prevents cell cycle progression in cells that have mitotic spindle defects. Although several spindle defects activate the spindle checkpoint, the exact nature of the primary signal is unknown. We have found that the budding yeast member of the Aurora protein kinase family, Ipl1p, is required to maintain a subset of spindle checkpoint arrests. Ipl1p is required to maintain the spindle checkpoint that is induced by overexpression of the protein kinase Mps1. Inactivating Ipl1p allows cells overexpressing Mps1p to escape from mitosis and segregate their chromosomes normally. Therefore, the requirement for Ipl1p in the spindle checkpoint is not a consequence of kinetochore and/or spindle defects. The requirement for Ipl1p distinguishes two different activators of the spindle checkpoint: Ipl1p function is required for the delay triggered by chromosomes whose kinetochores are not under tension, but is not required for arrest induced by spindle depolymerization. Ipl1p localizes at or near kinetochores during mitosis, and we propose that Ipl1p is required to monitor tension at the kinetochore.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of Function of the Cik1/Kar3 Motor Complex Results in Chromosomes with Syntelic Attachment That Are Sensed by the Tension Checkpoint

The attachment of sister kinetochores by microtubules emanating from opposite spindle poles establishes chromosome bipolar attachment, which generates tension on chromosomes and is essential for sister-chromatid segregation. Syntelic attachment occurs when both sister kinetochores are attached by microtubules from the same spindle pole and this attachment is unable to generate tension on chromo...

متن کامل

The signaling network that silences the spindle assembly checkpoint upon the establishment of chromosome bipolar attachment.

Improper kinetochore attachments activate the spindle assembly checkpoint (SAC) to prevent anaphase onset, but it is poorly understood how this checkpoint is silenced to allow anaphase onset. Chromosome bipolar attachment applies tension on sister kinetochores, and the lack of tension delays anaphase onset. In budding yeast, the delay induced by tension defects depends on the intact SAC as well...

متن کامل

The budding yeast Ipl1/Aurora protein kinase regulates mitotic spindle disassembly

Ipl1p is the budding yeast member of the Aurora family of protein kinases, critical regulators of genomic stability that are required for chromosome segregation, the spindle checkpoint, and cytokinesis. Using time-lapse microscopy, we found that Ipl1p also has a function in mitotic spindle disassembly that is separable from its previously identified roles. Ipl1-GFP localizes to kinetochores fro...

متن کامل

S. pombe Aurora Kinase/Survivin Is Required for Chromosome Condensation and the Spindle Checkpoint Attachment Response

The spindle checkpoint inhibits anaphase until all chromosomes have established bipolar attachment. Two kinetochore states trigger this checkpoint. The absence of microtubules activates the attachment response, while the inability of attached microtubules to generate tension triggers the tension/orientation response. The single aurora kinase of budding yeast, Ipl1, is required for the tension/o...

متن کامل

Efficient chromosome biorientation and the tension checkpoint in Saccharomyces cerevisiae both require Bir1.

Accurate chromosome segregation requires the capture of sister kinetochores by microtubules from opposite spindle poles prior to the initiation of anaphase, a state termed chromosome biorientation. In the budding yeast Saccharomyces cerevisiae, the conserved protein kinase Ipl1 (Aurora B in metazoans) is critical for ensuring correct chromosomal alignment. Ipl1 associates with its activators Sl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 15 23  شماره 

صفحات  -

تاریخ انتشار 2001